If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (6x2) + (11x) + 8 = 0 Reorder the terms: 8 + (11x) + (6x2) = 0 Solving 8 + (11x) + (6x2) = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 1.333333333 + (1.833333333x) + x2 = 0 Move the constant term to the right: Add '-1.333333333' to each side of the equation. 1.333333333 + (1.833333333x) + -1.333333333 + x2 = 0 + -1.333333333 Reorder the terms: 1.333333333 + -1.333333333 + (1.833333333x) + x2 = 0 + -1.333333333 Combine like terms: 1.333333333 + -1.333333333 = 0.000000000 0.000000000 + (1.833333333x) + x2 = 0 + -1.333333333 (1.833333333x) + x2 = 0 + -1.333333333 Combine like terms: 0 + -1.333333333 = -1.333333333 (1.833333333x) + x2 = -1.333333333 The x term is (1.833333333x). Take half its coefficient (0.9166666665). Square it (0.8402777775) and add it to both sides. Add '0.8402777775' to each side of the equation. (1.833333333x) + 0.8402777775 + x2 = -1.333333333 + 0.8402777775 Reorder the terms: 0.8402777775 + (1.833333333x) + x2 = -1.333333333 + 0.8402777775 Combine like terms: -1.333333333 + 0.8402777775 = -0.4930555555 0.8402777775 + (1.833333333x) + x2 = -0.4930555555 Factor a perfect square on the left side: ((x) + 0.9166666665)((x) + 0.9166666665) = -0.4930555555 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 24/5*37/7*6/1 | | (6x^2)+(11v)+8=0 | | 5x+6=y | | 13/6*35/4 | | 5/4*14/3 | | 125/2*262/9 | | 1/R^2 | | 4x^2-a^2=0 | | 17/7*21/8 | | 125/2*65/8 | | (80/2+15*3) | | 32/5*35/8 | | 3/8*1/5 | | 17/24*4/5 | | 5/7*4/1 | | 1/33*11/13 | | 33/1*11/13 | | 13/42*7/6 | | 13/42*6/7 | | 1/35*5/7 | | 35/1*5/7 | | 2/5*1/3 | | 4/5*1/3 | | 6/7*9/1 | | 5/6*1/4 | | 1/21*7/11 | | 7/8*5/1 | | 1/5*1/4 | | 10/7*1/8 | | 5/7*14/5 | | 4/5*4/1 | | 4-2=3+5p |